LESSON 4.3c

Polynomial Remainder Theorem

Today you will:

- Use synthetic division to evaluate a polynomial function
- Practice using English to describe math processes and equations

Core Vocabulary:

• Polynomial Remainder Theorem, p. 176

If a polynomial f(x) is divided by x - a, then the remainder is f(a).

The Remainder Theorem tells you that synthetic division can be used to evaluate a polynomial function.

The trick?

To evaluate f(x) when x = a ... i.e. find f(a) ... use synthetic division with k = a ... the remainder is f(a)

Example:

$$\frac{x^2-6}{x-2}$$
 or $(x^2-6) \div (x-2) \dots k = 2$
 1
 2
 4
 $f(2) = -2$
 1
 2
 -2
 $Try it: f(2) = (2)^2-6 = 4 - 6 = -2$

Use synthetic division to evaluate $f(x) = 5x^3 - x^2 + 13x + 29$ when x = -4. SOLUTION

The remainder is -359. So, you can conclude from the Remainder Theorem that f(-4) = -359.

Check

Check this by substituting x = -4 in the original function.

$$f(-4) = 5(-4)^3 - (-4)^2 + 13(-4) + 29$$
$$= -320 - 16 - 52 + 29$$
$$= -359 \checkmark$$

Use synthetic division to evaluate $f(x) = 4x^2 - 10x - 21$ when x = 5. SOLUTION

The remainder is 29. So, you can conclude from the Remainder Theorem that f(5) = 29.

Use synthetic division to evaluate $f(x) = 5x^4 + 2x^3 - 20x - 6$ when x = 2. SOLUTION

2	5	2	0	-20	-6
		10	24	48	56
	5	12	24	28	50

The remainder is 50. So, you can conclude from the Remainder Theorem that f(2) = 50.

Homework

Pg 177, #19-32, 38, 40